
 201

Chapter 6. Varying Variables

How many people are in your family? In your class? Are
they all the same? Or are they variable?

Got one in on you, didn’t I? There’s that word, “Variable.”

How many of your friends have the same color hair? The
same color eyes? How many are the same age? How many
were born in the same month as you? Anyone born on the
same day?

How many things about you and your group are the same?
How many are “variable?”

Varying Variables

202

Variables in Logo
Now let’s talk about Logo.

By now, you should know what this procedure will look
like after it's been run. What do you think?

TO BOXES

REPEAT 4 [FD 100 RT 90]

RT 90 PU FD 120 PD LT 90

REPEAT 4 [FD 100 RT 90]

END

Sure, that's a procedure to draw two boxes side by side.

But what if you wanted to draw 20 boxes? What if you
want each box to be bigger than the last?

What if you want them smaller? In other words, what if
you want to vary the size or the number of boxes?

No problem! This is where those things called “variables”
come in. A variable is something you put into a procedure so
you can change the procedure every time you run it.

 Varying Variables

 203

Yes, that does sound confusing, doesn’t it?

To help explain it, let’s take another
look at the experiment you did creating
pictures using just one shape. Find a big
sheet of paper and draw a picture using
your favorite shape. Use triangles,
squares, or rectangles — or even circles, if
you’ve peeked ahead in this book.

Remember, you can only use one type
of shape. But you can vary the size of the
shape all you want.

There’s that word again, “vary.”

Remember the caterpillar example? That’s a picture
drawn using just squares (and a little piece of a straight line).
And don’t forget the cat.

OK, got your drawing done? Before you try to put your
picture on the computer, let’s take a look at the new BOXES
procedure below. It may give you some ideas.

TO BOXES :SIZE
REPEAT 4 [FD :SIZE RT 90]
RT 90 PU FD :SIZE + 20 PD LT 90
REPEAT 4 [FD :SIZE RT 90]
END

You probably know what the variable is, don’t you? It's
the :SIZE. That’s right.

Now when you type BOXES to run the procedure, you
have to provide something new, an input.

Varying Variables

204

Try it out. Type...

BOXES 20

BOXES 40

BOXES 60

BOXES 100

When you type BOXES 20, you tell the :SIZE variable to
use the :SIZE of 20. What about BOXES 60. What will :SIZE
be then?

Variables must always have an input, or value. And they
must also have the two dots in front so Logo knows it’s a
variable.

Yes, that's a colon. But in Logo, we call them “dots.”
You'll find they can save you a lot of time and typing.

 Varying Variables

 205

Take a look. Remember the TRI procedure? Let’s add a
variable.

TO TRI :N
REPEAT 3 [FD :N RT 120]
END

See! You can name variables just about anything you
want. Rather than call this one :SIZE, call it :N. The :N can
stand for number. Of course, you could call it :X, :Z, or
:WHATEVER.

But you still have to use the dots.

Here are some examples that a 7-year-old had fun
dreaming up. They use this SQUARE procedure.

TO SQUARE :N
REPEAT 4 [FD :N RT 90]
END

It started as a simple exercise to see what different squares
would look like.

Varying Variables

206

TO SQUARES
SQUARE 60
SQUARE 80
SQUARE 100
SQUARE 120
END

Then she added a left turn, and that reminded her of her
mom’s stacking tables.

TO TABLES
SQUARES
LT 90
SQUARES
END

The more she looked at the tables, the more it looked like
half of a decorative mirror.

TO MIRROR
TABLES
LT 90
TABLES
END

And what would
happen if you stacked
mirrors?

TO MIRRORS
MIRROR
LT 45
MIRROR
END

 Varying Variables

 207

This is a lot to think about. So why not
stop for a while and experiment using one
shape in a design.

After you’ve had fun with one shape,
try doing something with two shapes.

You’ve already seen what you can do
with a square and a triangle. These were
combined to make a house. Then they
were used to make a wheel.

Since you’ve also made some flowers, maybe you can
“plant another garden?”

Varying Variables

208

Polygons and Things
Polygon? Now there’s a new word for you. Do you know

what it means? No, it doesn’t mean that Poly flew away.

We’ll talk lots more about polygons. But for now, think
about this for a moment.

Squares, triangles, and rectangles are polygons. So are
pentagons, hexagons, and octagons.

All of these shapes have one thing in common. They all
enclose an area that has at least three sides. (You can’t enclose
anything with two sides, can you?)

Triangles have three sides, squares and rectangles have
four, pentagons have five, and octagons have eight. Seems like
there’s a rule for polygons in there somewhere.

A polygon is a closed shape with at least three sides.

__

 Varying Variables

 209

Rabbit Trail 16. Variable String Toss
Here’s something else to explore. How about trying a

variation of the game String Toss? It’s called FD :N. (We’re
sneaking the variables in here, too.) The idea is to create a
design by passing the ball of string back and forth. The :N
variable can equal one step or as many as you want.

Let’s say you want
to create a square of
string. That’s really
easy. One person
plays the Turtle
starting at Home. The
Turtle holds one end of
the string, gives the
ball of string to the first
person, and says FD :N
times 5. The first
person takes 5 steps.

The first person then turns RT 90, holds the string to make
a corner, and gives the ball of string to the second person.
That person goes FD :N * 5 and RT 90. A third person takes
the ball of string and goes FD :N * 5 RT 90. And finally a
fourth person takes the string and brings it HOME.

See how this works? The string is now in the shape of a
variable square. Now try a hexagon, why don’t you?

Then maybe you can connect six triangles to make a fancy
hexagon.

It’s more fun when you make crazy shapes. Try it.

Varying Variables

210

If you find it hard to see the shapes, have everyone
carefully put the string on the floor and then step back. Can
you see the shape now?

__

Hexagons and Spiderwebs
To make that String Toss Game design on the computer,

you can use the TRI :N procedure you wrote earlier in this
chapter.

TO TRI :N

REPEAT 3 [FD :N RT 120]

END

What would happen if you repeated the TRI :N procedure,
turning after each triangle?

REPEAT 6 [TRI :N RT 60]

What do you call a
shape that has six sides
like this? That’s a
hexagon, right?

Hmmmm? That
sort of looks like a see-
through box — one of
those optical illusions.

But back to hexagons for now.

 Varying Variables

 211

TO HEXAGON :N
REPEAT 6 [TRI :N RT 60]
END

Be sure to tell the turtle how big to make the hexagon.
Try this:

HEXAGON 60
HEXAGON 80
HEXAGON 100

What does this look
like? Of course, it’s a
spiderweb!

Can you think of another way to write
this procedure so that the turtle will do the
same thing? How about this!

TO SPIDERWEB :N
HEXAGON :N
HEXAGON :N + 20
HEXAGON :N + 40
END

Go ahead. Type the SPIDERWEB :N procedure and then
try

SPIDERWEB 40

Varying Variables

212

Play around with this idea to see what it can do. Make up
some other shape procedures using variables.

Adding More
Variables

Can you think of a way to use more variables in the
SPIDERWEB procedure? What about substituting a variable
for 10? For 20? For both?

TO SPIDERWEB :N :X :Y
HEXAGON :N
HEXAGON :N + :X
HEXAGON :N + :X * :Y
END

This is getting complicated.

:N gives you the size of each side.
:X tells you how much to add to :N
:Y tells you to multiply :X by this number

After you’ve typed in this procedure, see what happens
when you try

SPIDERWEB 60 20 2

Does this look like the first spiderweb the turtle drew? It
should. Let’s change the variables to numbers and take a look.

TO SPIDERWEB 60 20 2
HEXAGON 60
HEXAGON 60 + 20
HEXAGON 60 + 20 * 2
END

__

 Varying Variables

 213

Changing a
Variable

Typing SPIDERWEB 60 20 2 is fine when you want to
make three hexagons that have sides of 60, 80, and 100. But
what if you want to do five hexagons? Seven hexagons?
Seventy hexagons?

Let’s try something! When you write a procedure, it
becomes another command you can use, right?

OK. Then let’s make the most of it. Tell SPIDERWEB
to draw a hexagon using the variable :N. Then tell
SPIDERWEB to add 10 to itself and do the same thing again.

TO SPIDERWEB :N
HEXAGON :N
SPIDERWEB :N + 10
END

Try it! What happens?

Wait a minute!

The last line of the SPIDERWEB procedure has the
procedure using itself. That’s strange!

No, that isn’t strange, that’s recursion. There’s a whole
chapter on what you can do with recursion. For now, let’s just
stick with the variables.

__

Local and Global Variables
Most versions of Logo use two types of variables: local

and global. Global variables are used by any procedure. Take
a look.

TO SHAPES :N
TRI :N

Varying Variables

214

SQUARE :N
RECTANGLE :N
END

How about it? Can you write procedures for a triangle, a
square, and a rectangle using :N to represent the distance
forward.

TO TRI :N
REPEAT 3 [FD :N RT 120]
END

TO SQUARE :N
REPEAT 4 [FD :N RT 90]
END

TO RECTANGLE :N
REPEAT 2 [FD :N RT 90 FD :N * 2 RT 90]
END

Now, when you type SHAPES 100, each of the procedures
will use 100 wherever there is an :N. The :N is a global
variable. It’s available to anyone who wants to use it.

Global variables tend to be a nuisance. Logo has to keep
track of which procedures uses which global variable, what
the value of the variable is, has it changed? This takes up
valuable memory.

Of course, sometimes you have to use global variables.
But it keep things neater if you can use local variables.

Local variables are “local” to the one procedure where it
is used. So there isn’t nearly as much record-keeping required,
making it easier on Logo.

 Varying Variables

 215

You write them like this:

TO TRI
LOCAL "X
MAKE "X 100
REPEAT 3 [FD :X RT 120]
END

Hey, there’s a new command, MAKE. You’ll learn more
about that on the next page. In the meantime, go ahead. Change
your TRI procedure. Change the TRI :N in the SHAPES
procedure to just TRI. Now run the SHAPES procedure using
SHAPES 100 again. What does the picture look like? Why?

You’ll see lots more examples of local variables as you
move through the rest of this book.

__

Outputting
Variables

OK, local variables are good. Global variables are not so
good. Is there another way to pass information between
procedures without using global variables?

Sure is!

You can OUTPUT them. You remember, OUTPUT sends
information to another procedure. Let’s use the TRI procedure
as an example. Here’s what you need to do.

TO TRI
REPEAT 3 [FD X RT 120]
END

TO X
OUTPUT 100

Varying Variables

216

END

In this example, X isn’t really a variable. It’s a procedure.
So how would you add a local variable to this so that X would
pass information to TRI?

How about this?

TO X
LOCAL "Z
MAKE "Z READWORD
OUTPUT :Z
END

Is this really the best way to run the TRI procedure? Of
course not. The important lesson here is

Don’t ever close your mind to new possibilities!

In other words, never say "Never."

Before we go, let’s confuse the issue even more.
Actually, here’s a way to simplify the X procedure above.
You can combine LOCAL and MAKE using the
LOCALMAKE command.

TO X

LOCALMAKE "Z READWORD

OUTPUT :Z

END

Keep this in mind as you continue.

__

 Varying Variables

 217

Making
Variables

LOCAL "X is easy enough to figure out in the TRI
procedure. But what’s with the MAKE "X 100?

MAKE is a command that gives a value to the variable
named "name." The name of a variable must always be what
Logo sees as a word. That means it can be a letter, such as :X,
or a word, such as :VARIABLE. Here’s how it works.

MAKE "<name> <value>

In the TRI example, the goal was to MAKE the variable
X have the value of 100. Then you can use the variable :X
within that procedure whenever you want something to be
equal to (have the value of) 100. In the TRI procedure, the
variable :N was used as the side of the triangle, which in this
case is 100 turtle steps long.

__

More Ways to
Make Variables

You just got introduced to MAKE. Well, Logo gives you
lots of other ways to vary your variables. Let’s start with
another look at MAKE.

MAKE "JOE 2
MAKE "TOM 4
MAKE "SAM :JOE + :TOM

So what does :SAM equal? If you said six, you get a Gold
Star.

You can also NAME :JOE + :TOM "SAM

This does the same thing as MAKE "SAM :JOE + :TOM
except that you NAME <value> "<name>.

Varying Variables

218

If you want to see what :SAM equals, you can tell the
computer to

PRINT :SAM
or
SHOW :SAM

You can also tell Logo to

SHOW THING "SAM
or
PRINT THING "SAM

THING does the same thing as the dots. It outputs the
value of the variable named in the word that follows THING.
Sure, that sounds confusing. Try it a few times and it will
begin to make sense. That’s why Morf likes to experiment so
much.

__

Conditional Things
Remember the SPIDERWEB procedure?

TO SPIDERWEB :N
HEXAGON :N
SPIDERWEB :N + 10
END

The problem with this procedure is that it just keeps
running, filling your screen with spiderwebs. Is there no way
to stop it other than pressing the HALT button?

 Varying Variables

 219

Well, there is a way. You just tell the turtle that IF the
last hexagon that it drew was as big as you want the spiderweb
to be, THEN stop drawing.

Here’s how you use IF. Since IF knows what you mean,
you don’t have to use the word THEN.

TO SPIDERWEB :N
IF :N > 100 [STOP]
HEXAGON :N
SPIDERWEB :N + 10
END

Look at that first line in this new procedure. When the
turtle reads this line, it learns that IF :N is greater than 100,
then stop drawing.

__

Greater Than,
Less Than

That thing that looks like an arrowhead after the :N > is
the symbol for “greater than.” It means that if the value of :N
is greater than 100, then STOP.

If > means “greater than,” what does that other arrow
symbol [<] mean?

You guessed it. It means “less than.” An easy way to
remember which symbol is which is that the arrow always
points to the smaller value.

Varying Variables

220

• IF :N > 100 means that the value of :N must be larger
than 100, at least 101.

• IF :N < 100 means that the value of :N must be less
than 100, no more than 99.

For our example, we picked 100 as a place to stop. You

can select your own stopping point. Or you can make the
stopping point another variable. How would you do that?

Go ahead. Give it a try. But remember, if you’re going
to use a variable like this, you have to add it to the procedure
name.

TO SPIDERWEB :N ____
IF :N > ____ [STOP]
HEXAGON :N
SPIDERWEB :N + 10 ____
END

"OK, I understand IF. IF something is true, then Logo
will carry out the next instruction. And that sits inside brackets.
But what if that something is not true? What if I want Ernestine
to do something if the answer is false?

__

TEST Actually, there are two ways to handle that. Look at how
SPIDERWEB has been changed below.

TO SPIDERWEB :N
TEST :N > 100
IFTRUE [CS CT PR [SORRY!] STOP]
IFFALSE [HEX :N]
SPIDERWEB :N + 10 ____
END

 Varying Variables

 221

The first lines says to test :N to see if it is greater than 100.
The next line says that if the test is true, clear the screen, clear
the text, print SORRY!, and stop. The third line says that if
:N is not greater than 100, go ahead and run HEX :N. (HEX
:N is a new short name for HEXAGON :N.)

What do you think would happen if you left out IFFALSE?
Then you’d have

TEST :N > 100
IFTRUE [CS CT PR [SORRY!] STOP]
HEX :N

Would that work? Try it and see. What did you learn
from that?

You don’t always have to have both IFTRUE (IFT for
short) and IFFALSE (IFF for short) in your procedures.

__

IFELSE Another way is to use the IFELSE command. Let’s
change the SPIDERWEB procedures and try it out.

TO SPIDERWEB :N

IFELSE :N > 100 [CS CT PR [SORRY!]STOP][HEX :N]

SPIDERWEB :N

END

The first line says that if :N is greater than 100

• clear the screen

• clear the text

• print SORRY!

• Stop

Varying Variables

222

If :N isn’t greater than 100, run the HEX procedure and
move on the next line. You can think of IFELSE as

IF a condition is true, THEN do this or ELSE do this.
Actually, this is just what some Logo packages let you do. For
example:

TO L.OR.R
PR [SHOULD THE TURTLE GO LEFT OR RIGHT?]
IF RC = "L THEN LT 90 FD 100 ELSE RT 90 FD 100
END

You can also write the IF line as

IF RC = "L [LT 90 FD 100][RT 90 FD 100]

This works just fine in some versions of Logo — but not
in MSW Logo. You need IFELSE.

Go ahead and explore. You’ll see more of IFELSE.

When you’ve finished with spiderwebs, why not add
variables to your procedures for drawing other shapes? See
what you can do with squares, rectangles and things.

Remember, this is your own Great Logo Adventure!

__

More on Tessellations
Tessellations are really great places to use variables.

These repeating patterns usually start with a basic shape that
is repeated in varying sizes.

 Varying Variables

 223

Do you remember the tessellation from Chapter 4 that
used Diamonds? This gets a bit tricky so think this one through
carefully. Can you combine DIAMOND, DIAMOND1, and
DIAMOND2 to make one procedure using variables? How
would this change the other procedures?

Here are the Diamond procedures.

TO DIAMOND
REPEAT 2 [FD 8 RT 60 FD 8 RT 120]
END

TO DIAMOND1
REPEAT 2 [FD 24 RT 60 FD 24 RT 120]
END

TO DIAMOND2
REPEAT 2 [FD 40 RT 60 FD 40 RT 120]
END

Look at the distances the turtle moves. Can you write one
procedure for these that uses a distance variable?

TO DIAMOND :DIST
REPEAT 2 [FD :DIST RT 60 FD :DIST RT 120]
END

Now, rather than use DIAMOND, DIAMOND1, or
DIAMOND2, you can use DIAMOND 8, DIAMOND 24, or
DIAMOND 40.

__

More Fun With
Squares

Let’s try a tessellation with squares. The first thing to do
is draw a tower of squares, each square smaller than the last.

Varying Variables

224

TO SQUARES :S
IF :S < 0 [STOP]
REPEAT 4 [FD :S RT 90]
FD :S
SQUARES :S - 5
END

Try SQUARES now using different inputs. This is going
to be the basic pattern in the tessellation. The picture above
was made using 30 as the input to SQUARES.

Next, let’s make a TOWER of SQUARES.

TOWER takes two inputs: one that says how big the
SQUARES are, and the second to tell the turtle how many
times to repeat the SQUARES pattern.

TO TOWER :S :T
IF :T = 0 [STOP]
SQUARES :S
TOWER :S :T - 1
END

Here’s the pattern made by using TOWER 15 5.

And this raises a question. Are you just going to make a
tall, skinny tessellation? Or can you make the TOWER
procedure turn the corner, maybe like a picture frame?

TO FRAME
PU LT 90 FD 100 RT 90 BK 40 PD
REPEAT 4 [TOWER 15 4 RT 90]
END

 Varying Variables

 225

The first thing the
FRAME procedure
does is move the turtle
over to the left. Then
it draws the FRAME
using the REPEAT
command.

REPEAT 4 [TOWER 15 4 RT 90]

Now we’re getting some where. Try different inputs.
TOWER 15 4 seems to work pretty good.

To make this into an interesting tessellation, why not just
fill up a frame with the SQUARES pattern? How are you going
to do that?

__

Rabbit Trail 17. Tessellating Squares

Here’s a quick and easy Rabbit Trail for you. It’s a great
way to discover what you can do with your SQUARES pattern.
You can either use squares of different sizes or better yet, print
a page full of the SQUARES pattern and cut them out.

Now move the patterns around to see what kind of patterns
you can make.

Can you make the FRAME pattern using squares or your
cutouts?

Once you figure that one out, then figure out what the
turtle would have to do to fill the FRAME pattern after it draws
the first TOWER pattern?

Varying Variables

226

__

More Towers When the turtle draws TOWER 15 4, it can’t just turn
around a draw the pattern again, can it? What would happen?
Why not try it and see?

After the turtle gets to the top of the first pattern, it is going
to have to move over a bit to draw the TOWER pattern coming
down the screen. But how far?

You know that the pattern is :S steps wide. In TOWER
15 4, :S is 15, right? So let’s write a procedure for the turtle
to move at the top of the TOWER.

TO MOVE1
RT 90 FD _____ RT 90
END

When the turtle gets to the top of the TOWER, she’ll turn
right, move over, and then turn right again. What happens if
we use the value of :S or 15? Does that work?

No. The turtle ends up drawing the pattern over the
original drawing. When the turtle turns at the top, it starts
drawing the SQUARES pattern by moving to the right. This
means the turtle has to move twice as far, or :S * 2.

Try it. See what happens.

TO MOVE1 :S
RT 90 FD :S * 2 RT 90
END

Try this:

 Varying Variables

 227

TOWER 15 4
MOVE1 15

It seems to work, doesn’t it!

You’re not out of the woods yet. Do
you see that blank space at the bottom —
to the right?

How are you going to fill that in? Also, what is the turtle
going to have to do to draw the next TOWER?

How about this?

TO MOVE2 :S
RT 90 FD :S BK :S RT 90
END

The turtle turns right, fills in the gap, backs up, turns right
again (that’s 180 degrees), and is ready to start again.

You didn’t know this was going to be this complicated,
did you?

There’s one more thing to do now. That’s to write a
procedure that will create the repeating tessellation.

We’ll call it COVER.

TO COVER :S :T :X

Varying Variables

228

IF :X = 0 [STOP]

TOWER :S :T

MOVE1 :S

TOWER :S :T

MOVE2 :S

COVER :S :T :X - 1

END

You already know what the :S and :T variables are. What
about the :X?

That’s easy enough. Just like the :T variable, :X tells
COVER the number of times to repeat itself.

__

Musical
Variables

In the last chapter, we talked about making music. Now
that you’ve read about variables, how about some musical
variables?

Do you want to turn your keyboard into musical keys?
Here’s one way to do it.

TO MUSIC
MAKE "KEY RC
IF :KEY = "C [SOUND [262 100]]
IF :KEY = "D [SOUND [294 100]]
IF :KEY = "E [SOUND [330 100]]
IF :KEY = "F [SOUND [349 100]]
IF :KEY = "G [SOUND [392 100]]
IF :KEY = "A [SOUND [440 100]]
IF :KEY = "B [SOUND [494 100]]
IF :KEY = "S [STOP]

 Varying Variables

 229

MUSIC
END

There’s another new command, RC. That’s short for

READCHAR. When Logo sees the READCHAR or RC
command, it stops and waits for you to type a character. In
this case, the letter you type becomes the variable :KEY.

If you type one of the keys — A, B, C, D, E, F, G — you
hear a note. Just make sure you use a capital letter. Otherwise
Logo just runs the MUSIC procedure again and again until you
hit one of the sound keys and press Enter.

__

Rabbit Trail 18. Tangrams

The Tangram is an Oriental puzzle with seven shapes of
different sizes.

Varying Variables

230

The puzzle is to use these shapes to make lots of different
things. Here’s my pup tent.

Why not visit your local library or bookstore? You’ll find

there are a number of books on tangrams that will give you
lots of ideas of what to do with your new puzzle pieces.

There’s a PCX file on the CD that came with this book

called TANGRAM.PCX.

 Varying Variables

 231

1. Print the picture and paste it to a piece of cardboard.

2. Carefully cut out the pieces.

3. Now you can play with the pieces to create interesting
shapes: birds, ships, dragons, and other interesting
designs. Here’s some to get you started.

4. Now draw them on the computer.

There’s a procedure on the CD that came with this book
called TANGRAM.LGO. You can use that to create your
Tangram shapes. We talk about it in The Great math
Adventure chapter.

Now, why not see what you can do with Tangrams?

__

Adding Borders Morf just loves to put borders around things, even the
graphics window. Take a look!

Varying Variables

232

Joe Power, a friend from California, taught Morf how to
do that. It comes in real handy when you want to do a pretty
card or announcement.

Here’s the procedure.

TO BORDER
CS HT
PU LT 90 FD 200 LT 90 FD 100 LT 180 PD
BRAID
END

You can change the change this procedure to make the
border larger or smaller. You also have to change the last line
of the BRAID procedure.

TO BRAID
MAKE "SQR2 1.4 ;Square root of 2
MAKE "HFSQ2 0.7 ;Half the square root of 2
MAKE "S2 8.5 ;Square root of 2 * 6

 Varying Variables

 233

MAKE "H2 4.2 ;(Square root of (2 * 0.5)) * 6
MAKE "S2H2 12.7 ; :S2 + :H2
PU FD 24 RT 45 FD 4.2 SETH 0 PD
REPEAT 2 [STRIP 20 CORNER STRIP 30 CORNER]
END

What’s that stuff out to the side?

__

Adding
Comments

Those are comments. Programmers usually "annotate"
their code, or programs. That means that they leave
explanations written in their programs so that users will know
what the program or procedure is supposed to do. In this case,
the notes tell you what the variables mean.

You can add notes to your MSW Logo procedures by
typing a semicolon followed by your notes. Logo doesn’t pay
any attention to anything that follows the semicolon. If your
version of Logo does not recognize the semicolon, use this
procedure. It does the same thing.

TO ; :comment
END

As to the "square roots" in the comments, don’t worry
about them right now. You’ll get into them in The Great Math
Adventure chapter. You’ve got enough to think about just
trying to figure out what the BORDER procedure is doing.

__

Varying the
Border

To change the size of the BORDER, change the number
of times that STRIP is repeated. Change it from STRIP 20 to
STRIP 15, for example. Go ahead. Give it a try.

TO CORNER
LT 45 FD :H2 RT 45 FD 6

Varying Variables

234

RT 45 FD :S2 RT 45 FD 18
RT 45 FD :S2H2 PU
RT 90 FD :H2 PD RT 90 FD :S2
LT 45 FD 18 LT 90 FD 6 PU
LT 45 FD :S2 PD LT 90 FD 17 PU
RT 90 FD :H2 PD RT 90 FD 17 PU
RT 45 FD 6 RT 90 FD 12 PD
RT 45 FD :H2 RT 45 FD 6
RT 45 FD :H2 PU RT 90 FD :H2 PD
RT 45 FD 6 PU BK 15 RT 90 FD 9 RT 90 PD
END

TO START
; Here's a simple procedure that puts a braided border
; around the edge of the screen. Morf likes frames
; for his pictures.
; You can change the size of the border by changing the
; variable used by STRIP in the BRAID procedure.
BORDER
END

TO STRIP :N
REPEAT :N ~
 [

LT 45 FD :H2 RT 45 FD 6 RT 45 FD :S2H2
PU RT 90 FD :H2 PD RT 90 FD :S2 LT 45 FD 6 PU
LT 45 FD :S2H2 PD LT 135 RT 45 FD :H2 LT 45
FD 6 LT 45 FD :S2H2 PU LT 90 FD :H2 PD LT 90
FD :S2 RT 45 FD 6 PU RT 135 FD :S2H2 RT 45
FD 6 PD
]

END

__

 Varying Variables

 235

Using the Tilde The Strip procedure is actually one long line. But look
how it’s written.

REPEAT :N ~

What’s that symbol after :N?

It’s a tilde. In MSW Logo, that means that the instruction
list is continued on the next line. There you find a single
bracket:

[

When you have long lines and lists inside other lists, they
can get confusing — very difficult to read. MSW Logo gives
you some help. When MSW Logo sees a single bracket like
that, it knows to look on the next line for the rest of the list.

The rest of the line in STRIP is simply a long list of
commands. But what if you had lists within lists. Here’s a
simple example.

TO HEX
REPEAT 6 ~
 [
 REPEAT 3 ~
 [

 FD 100 RT 120
]
 RT 60

]
END

This is the same as

Varying Variables

236

TO HEX
REPEAT 6 [REPEAT 3 [FD 100 RT 120] RT 60]
END

When procedures begin to get long and complex, you need
a system that allows you to read and understand what’s going
on. As you will see in coming chapters, this can come in real
handy.

Check out the procedures in the MSW Logo "Examples"
directory for some other examples of multi-line procedures.

__

From Two to Three Dimensions
"Morf, do you remember Jamie, the six-year-old from that

kindergarten class we worked with a few years ago?"

"The name’s familiar. What did she do?"

"She was the one who told that newspaper reporter that
she was smarter than the computer — because she could roller
skate!"

Jamie was among the children at a private school near
Dallas who enjoyed learning with Logo on and off the
computer. What made her kindergarten class so special was
the way they quickly and easily learned to visualize the
differences between their three-dimensional world and Logo’s
two dimensional world.

Here's a challenge for you. Draw pattern of a soccer ball
on the screen.

The first thing you see, looking at a
soccer ball, is a bunch of hexagon shapes.

 Varying Variables

 237

When some 3rd and 4th grade computer
club members were asked to draw this
pattern on the screen, they thought it would
be easy.

TO SOCCER.BALL :DIS
REPEAT 6 [REPEAT 6 [FD :DIS RT 60] FD :DIS LT 60]
END

The boy’s team thought that all they had to do was draw
a series of hexagons. But the center was a pentagon, not a
hexagon. So their procedure didn’t quite work, did it.

The girl's team was the first to figure out that they could
not make the soccer pattern on the screen as it appears on the
ball. They had to flatten it out. At first, they thought this
procedure was wrong. But then they discovered it was really
correct.

TO SOCCER :DIS
REPEAT 5 [REPEAT 6 [FD :DIS RT 60] FD :DIS LT 72]
END

The girls printed twelve of their patterns, colored them,
cut them out, taped them together, and made their own soccer
ball. When they were finished, they decided it made a better
pinata.

Varying Variables

238

So they filled it with candy and had a party.

__

Adam’s Soccer
Ball

One young man decided to see if he could produce the
entire soccer ball pattern in just one printout. Two was the best
he could do.

Here’s a picture of Adam’s soccer ball. The procedure is
on the CD that came with this book as SOCCERM.LGO.
Maybe you can figure out a way do it all at once.

This is the M printout.

 Varying Variables

 239

__

Rabbit Trail 19. Folded Paper Fun
Making the soccer ball out of paper is just one of many

things you can do with Logo and folded paper. The computer
club that made the first flattened soccer ball pattern found that
you can make all sorts of three dimensional objects from folded
paper.

How about a simple cube? This takes you from the two

dimensional square to a three dimensional cube.

TO CUBE :D
CS HT
REPEAT 4 [SQUARE :D RT 90 FD :D LT 90]
PU HOME REPEAT 2 [RT 90 FD :D] RT 180 PD
REPEAT 3 [SQUARE :D FD :D]
END

TO SQUARE :D
REPEAT 4 [FD :D RT 90]
END

This is the M2 printout.

Varying Variables

240

The group first cut out a number of cardboard squares.
Then they taped them together to see what kind of shapes they
could make. The next step was to transfer the pattern to the
computer.

Making 3-D shapes from triangles really got interesting

TO TETRAHEDRON :D
RT 30 TRI :D MOVER :D TRI :D
MOVEL :D TRI :D
END

TO MOVER :D
RT 60 FD :D LT 60
END

TO MOVEL :D
LT 60 FD :D RT 60
END

TO TRIR :D
RT 60 FD :D TRI :D
END

TO TRI :D
REPEAT 3 [FD :D RT 120]
END

TO OCTAHEDRON :D
LT 30 TRI :D RT 30 TETRAHEDRON :D
LT 60 TRI :D TRIR :D TRIF :D
END

TO TRIF :D

 Varying Variables

 241

FD :D RT 60 TRI :D
END

TETRAHEDRON and OCTAHEDRON are just the
beginning of what you can do with Logo and a printer.

 Go ahead. Try these. Print them. Fold them up. And
then design your own 3-D figures.

The whole idea is to explore, to discover what you don’t
know and then go find the answers.
__

FOR "No, Morf, this isn’t a golf match. FOR is a new command
to explore. It can be a big help sometimes. Here, watch what
this one-liner does."

FOR [N 0 2200] [FD 3 RT (:N * :N)]

That’s not nearly as bad as it looks. There’s just a bunch
of stuff to remember. Maybe it would help to look at the
procedure below. It does the same thing.

TO CRAZY.CIRC :N
IF :N > 2200 [STOP]
FD 3 RT (:N * :N)
CRAZY.CIRC :N + 1
END

Here’s another look at it as a different kind of one-liner.

MAKE "N 0 REPEAT 2200 [FD 3 RT (:N * :N) ~
MAKE "N :N+1]

Varying Variables

242

This tells you exactly how it works.

N is the name of the variable used in the crazy circle.
0 is the starting value of :N
2200 is the final value of :N
[FD 3 RT (:N * :N)] The list of instructions to carry out.

In MSW Logo, FOR looks for two lists. The first list "sets
the rules" for what’s supposed to happen. The second is a list
of what is going to happen.

Logo looks for a word as the first element in the first list.
Yes, N is a word in Logo even though it’s only one letter. The
rest of the list includes two or three numbers.

The first number is the starting value for the variable, N.
The second number is the final value for :N. There can be a
third number that tells Logo how to count from the first value
to the final value of the variable. Normally Logo will count by
1 as it did in CRAZY.CIRCLE. How about this one:

FOR [N 0 100 5] [SHOW :N]

In this case, Logo counts by five. This line says:

For the variable :N, start at 0 and go to 100, making each
step 5. Now show (or print) :N.

Here’s some other examples to play with. These came
from an on-line contest to find the prettiest one-liner.

FOR [X 1 150] [FD :X RT 89]
FOR [I 0.01 4 0.05] [REPEAT 180 [FD :I RT 1]]
FOR [X 10 200] [SETPENSIZE SE :X :X ~

REPEAT 36 [FD 20 RT 15]]

 Varying Variables

 243

DEFINE Your Procedures
Speaking of oneliners, here’s another way to define

procedures and variables. Use the DEFINE command.

DEFINE "SQUARE [[SIDE] [FD :SIDE RT 90]]

Try it. You’ll see that this line is the same as:

TO SQUARE :SIDE
FD :SIDE RT 90
END

Keep in mind that DEFINE does what it says it’s going to
do: define a procedure. It doesn’t run the procedure. You have
to tell Logo to do that.

The nice thing about it is that DEFINE can be used as a
command within another Logo procedure, whereas TO
requires you to use the Mode window or the editor.

The first thing that DEFINE looks for is a word that says
what the name of the procedure is to be. In this case, the name
of the procedure is SQUARE. Next, DEFINE looks for a list
that includes any variable inputs followed by lists of
instructions. Each line of instructions is put inside brackets.

You don’t have to use variables to use the DEFINE
command. Both of these examples work just fine.

DEFINE "SQUARE [[][REPEAT 4 [FD 50 RT 90]]]

DEFINE "HELLO [[][PR "|I'M LOGY!|][PR "|I'M MORF!|]]

Remember the SHAPES procedure? Here’s another way
to write the shapes procedures using DEFINE within a
superprocedure.

Varying Variables

244

TO SHAPES

DEFINE "SQUARE [[][REPEAT 4 [FD 50 RT 90]]]

DEFINE "TRI [[][REPEAT 3 [FD 50 RT 120]]]

DEFINE "REC [[][REPEAT 2 [FD 50 RT 90 FD 100 ~

RT 90]]]

SQUARE TRI REC

END

Here’s one to have some fun with:

DEFINE "FRAC [[N] [IF :N > 1 [FRAC :N RT 60 ~

FRAC :N FD :N]]

is the same as defining this procedure like this:

TO FRAC :N
IF :N > 1 [FRAC :N * .6 RT 60 FRAC :N *.6 FD :N]
END

Now that’s weird! You’ve got a procedure calling itself
— not just once, but twice. That’s recursion, which is discussed
in the Recursion chapter.

This little monstrosity is a fractal procedure. To really
understand what’s going on, you’ll have read the Recursion
chapter and The Great Math Adventure chapter. In the
meantime, why not have some fun with it.

Try FRAC 100

 Varying Variables

 245

Try different numbers to see what it does. Then change .6
to another number, like .7 or .4. Change RT 60 to RT 90 or RT
72. What happens?

 To really understand this procedure, you’re going to have
to read the recursion and math adventure chapters.

Copying
Definitions

Hey, do you want to play a trick on your parents? Maybe
on your teacher? I just love playing tricks on Logy.

COPYDEF and REDEFP are commands that let you
rename your own procedures as well as your Logo primitives.
Don’t worry, these new names are not saved. And while these
commands can be useful at times, they sure can be fun. They
use variables, too!

Let’s start with COPYDEF. This one’s easy.

COPYDEF "FRACTAL "FRAC

This copies the new name FRACTAL to the old name
FRAC.

Now type

EDIT "FRACTAL

You get

TO FRAC :N
IF :N > 1 [FRAC :N * .6 RT 60 FRAC :N *.6 FD :N]
END

What happened to the new name FRACTAL? Actually,
it’s buried, something you’ll read about in the next section.

Varying Variables

246

Some versions of Logo copy the whole procedure with the new
name. Then you’ll get:

TO FRACTAL :N
IF :N > 1 [FRAC :N * .6 RT 60 FRAC :N *.6 FD :N]
END

This shows you that you have to be careful using
COPYDEF. What would happen if you erased the FRAC
procedure?

You’d be in big trouble, that’s what. So what good is this
new command?

Suppose you wanted to run a procedure that uses the
SETPOS command but your version uses the SETXY
command. One of the ways to get around this difference is to
simply type

COPYDEF "SETPOS "SETXY

Now you’ve got a SETPOS command that acts the same
as the SETXY command. Get the idea?

__
Redefining
Primitives

Now that you know how to copy a new name to a
procedure, let’s try it on a Logo primitive. To do that, you have
to make REDEFP true. That means to turn it on. Here’s how:

MAKE "REDEFP "TRUE

Now you can go ahead and change the Logo primitives.

ERASE "FD

 Varying Variables

 247

Now try FD 100. What happens? You get

I don’t know how to FD

Now try this one.

COPYDEF "FD "BK
FD 100

Remember, you COPYDEF <new name><old name>.
So what happened? Does this give you any ideas?

Bury and Unbury
When you COPYDEF a new name over an old name, the

old name stays around just as you saw above. The new name
gets buried.

BURY is one of those Logo primitives that is often
ignored. But it can be very useful.

Let’s try something.

1. Load any procedure.

2. Type BURYALL and press Enter.

3. Type POALL and press Enter.

Where’d the procedures go?

4. Try to run the buried procedure. What happened?

5. Now load another procedure.

6. Type UNBURYALL and press Enter.

7. Type EDALL and press Enter.

Both the procedures are now visible in the Editor, aren’t
they?

Varying Variables

248

What this means is that when you bury something, it
moves from your workspace into another part of the
computer’s memory. It’s like it’s buried!

Why not bury the color procedures from the last chapter?
First load the color procedures. Then type

BURY "COLORS

If you type POTS, nothing is displayed, right? Now type

SETSC BLACK

The screen color turns black.

You don’t have to remember color numbers anymore. Use
the names.

If you ever want to see what’s buried, just say

UNBURY "COLORS or

UNBURYALL

This "digs up" everything that’s buried.
__

Planting
Another Garden

Early in this chapter, you had the chance to "plant another
garden." Before you leave this chapter on variables, how about
planting another garden by adding a twist to the Anyshape
procedure. This also adds a twist to running procedures
automatically and shows you something else about variables.

 Varying Variables

 249

In the FLOWERS procedure, you run procedures from
within another procedure. Take a look.

TO FLOWERS :REPEATS :LIST
REPEAT :REPEATS ~
 [RUN :LIST RT 360 / :REPEATS]
END

RUN is a command that tells Logo to run a list of
commands. Your remember what a list is, don’t you? The
GARDEN procedure gives you a pretty good idea. Lists can
contain words, commands, or other lists.

Take a look at the first line of GARDENS. After you
clean the screen, you have FLOWERS 5. That means that
the :REPEATS variable has a value of 5. Then you have a
list [FD 50].

TO GARDEN
CS FLOWERS 5 [FD 50] WAIT 60
CS FLOWERS 5 [FD 60 SHAPE 50 5] WAIT 60
CS FLOWERS 5 [FD 50 LT 30] WAIT 60
CS FLOWERS 7 ~
 [FD 50 LT 60 FD 50 RT 120 FD 50 LT 60 FD 50]
WAIT 60 CS FLOWERS 8 [SHAPE 100 5] WAIT 60
CS FLOWERS 8 [SHAPE 100 3] WAIT 60
CS FLOWERS 8 [SHAPE 100 4] WAIT 60
CS FLOWERS 8 [SHAPE 80 6] WAIT 60
CS FLOWERS 5 ~
 [FD 80 FLOWERS 8 [SHAPE 80 3] BK 80]
END

TO SHAPE :SIZE :REPEATS
REPEAT :REPEATS [FD :SIZE RT 360 / :REPEATS]
END

__

Varying Variables

250

Waiting
Do you remember when we mentioned "waiting" before?

There are times that you want to slow down the computer so
you can see what’s going on, or when you just want it to wait
a few seconds. That’s where the WAIT command comes in.

WAIT <time in 60ths of a second>

There’s another way to slow the computer down or to have
it take a pause. Write your own WAIT command. Because
WAIT is a primitive already, call your new procedure TIME
or TIMER.

TO TIMER :T
IF :T = 0 [STOP]
TIME :T - 1
END

You can make this procedure as precise a timer as you
need because you can make :T whatever you want. After all,
it is a variable. You can also change :T - 1 to :T - 0.25 or
whatever. It’s another way to get Logo to do exactly what you
want it to do. You can get it to wait in hundreths or even
thousandsth of a second.

"What if I just want to pause for a moment while running
a procedure? Can I do that?"

Sure, you can. That’s what the Pause button is for; the
one over to the right in the Commander Box. Try it and see
what happens.

__

Last Minute
Ideas

The GARDEN procedure is OK. But have you ever
seen a black and white garden? Try adding some color to it.

 Varying Variables

 251

GARDEN shows you a number of individual flower
shapes. Maybe you want to change those shapes. Or maybe
you want them to stay on the screen for a longer time. Add
a WAIT command.

Remember the last FLOWER picture that is displayed?

FLOWERS 5 [FD 80 FLOWERS 8 [SHAPE 80 3] BK 80]

Why not add some variations of this to the GARDEN
procedure so you have different groups of flowers in your
garden. Here’s one idea:

FLOWERS 12 [SHAPE 30 8]

Also, why not have your flower garden "grow" when it
loads.

Make "startup [GARDEN]

Whatever you do, have fun with your new garden.

__

Varying Variables

252

