Chapter 6. Varying Variables

How many people arein your family? In your class? Are
they all the same? Or are they variable?

o~

Gotoneinonyou, didn’t? There’ sthat word, “ Variable.”

How many of your friends have the same color hair? The
same color eyes? How many are the same age? How many

were born in the same month as you? Anyone born on the
same day?

How many thingsabout you and your group arethe same?
How many are “variable?’

201

Varying Variables

Variables in Logo
Now let’s talk about Logo.

By now, you should know what this procedure will ook
like after it's been run. What do you think?

TO BOXES

REPEAT 4 [FD 100 RT 90]
RT90PUFD 120PD LT 90
REPEAT 4 [FD 100 RT 90]
END

Sure, that's a procedure to draw two boxes side by side.

But what if you wanted to draw 20 boxes? What if you
want each box to be bigger than the last?

What if you want them smaller? In other words, what if
you want to vary the size or the number of boxes?

Noproblem! Thisiswherethosethingscalled“variables’
comein. A variableissomething you put into a procedure so
you can change the procedure every time you run it.

202

Varying Variables
Y es, that does sound confusing, doesn’t it?

To help explainit, let’'stake another
look at the experiment you did creating
pictures using just one shape. Find abig
sheet of paper and draw a picture using
your favorite shape. Use triangles,
squares, or rectangles— or evencircles, if
you'’ ve peeked ahead in this book.

Remember, you can only use one type
of shape. But you can vary the size of the
shape al you want.

There' sthat word again, “vary.”

Remember the caterpillar example? That's a picture
drawn using just squares (and alittle piece of astraight line).
And don'’t forget the cat.

OK, got your drawing done? Before you try to put your
picture on the computer, let’ s take alook at the new BOXES
procedure below. It may give you some ideas.

TO BOXES:SIZE

REPEAT 4 [FD :SIZE RT 90]

RT 90 PU FD :SIZE+20PD LT 90
REPEAT 4 [FD :SIZE RT 90]

END

Y ou probably know what the variableis, don’'t you? It's
the :SIZE. That'sright.

Now when you type BOXES to run the procedure, you
have to provide something new, an input.

203

Varying Variables

204

Tryitout. Type...

BOXES 20
BOXES 40
BOXES 60
BOXES 100

When you type BOXES 20, you tell the:SIZE variableto
usethe:SIZE of 20. What about BOXES60. What will :SIZE
be then?

Variables must always have an input, or value. And they
must also have the two dotsin front so Logo knowsit’'sa
variable.

Yes, that'sacolon. Butin Logo, we call them “dots.”
You'll find they can save you alot of time and typing.

Varying Variables

Take alook. Remember the TRI procedure? Let’'sadd a
variable.

TOTRI:N

REPEAT 3[FD :N RT 120]
END

See! Y ou can name variables just about anything you
want. Rather than call thisone :SIZE, call it :N. The :N can

stand for number. Of course, you could call it : X, :Z, or
‘WHATEVER.

But you still have to use the dots.

Here are some examples that a 7-year-old had fun
dreaming up. They use this SQUARE procedure.

TO SQUARE :N

REPEAT 4 [FD :N RT 90]
END

It started asasimpleexerciseto seewhat different squares
would look like.

205

Varying Variables

TO SQUARES
SQUARE 60
SQUARE 80
SQUARE 100
SQUARE 120
END

Then she added a left turn, and that reminded her of her
mom’ s stacking tables.

TO TABLES
SQUARES
LT 90
SQUARES
END

Themore shelooked at thetables, the moreit looked like
half of adecorative mirror.

TO MIRROR
TABLES

LT 90
TABLES
END

And what would
happen if you stacked
mirrors?

TO MIRRORS
MIRROR

LT 45
MIRROR

END

206

Varying Variables

Thisisalot to think about. Sowhy not
stop for awhile and experiment using one
shapein adesign.

After you' ve had fun with one shape,
try doing something with two shapes.

Y ou’'ve aready seen what you can do
with asquare and atriangle. These were
combined to make a house. Then they
were used to make awhed!.

Since you' ve also made some flowers, maybe you can
“plant another garden?”’

207

Varying Variables

Polygons and Things

Polygon? Now there’ sanew word for you. Do you know
what it means? No, it doesn’t mean that Poly flew away.

We'll talk lots more about polygons. But for now, think
about this for a moment.

Squares, triangles, and rectangles are polygons. So are
pentagons, hexagons, and octagons.

All of these shapes have one thing in common. They all
enclosean areathat hasat |east threesides. (Y oucan’t enclose
anything with two sides, can you?)

Triangles have three sides, squares and rectangles have
four, pentagonshavefive, and octagonshaveeight. Seemslike
there’sarule for polygons in there somewhere.

A polygon is a closed shape with at least three sides.

208

Varying Variables

Rabbit Trail 16. Variable String Toss

Here' s something else to explore. How about trying a
variation of the game String Toss? It'scalled FD :N. (We're
sneaking the variablesin here, too.) Theideaisto create a
design by passing the ball of string back and forth. The :N
variable can equal one step or as many as you want.

Let’ssay you want
to create a square of
string. That'sreally
easy. One person
playsthe Turtle
starting at Home. The
Turtleholdsoneend of
the string, givesthe
ball of stringtothefirst
person, andsaysFD :N
times5. Thefirst
person takes 5 steps.

Thefirst personthenturnsRT 90, holdsthe string to make
acorner, and givesthe ball of string to the second person.
That person goes FD :N * 5 and RT 90. A third person takes
the ball of string and goesFD :N * 5 RT 90. And finally a
fourth person takes the string and brings it HOME.

See how thisworks? The string is now in the shape of a
variable square. Now try a hexagon, why don’t you?

Then maybeyou can connect six trianglesto makeafancy
hexagon.

It's more fun when you make crazy shapes. Try it.

209

Varying Variables

If you find it hard to see the shapes, have everyone
carefully put the string on the floor and then step back. Can
you see the shape now?

Hexagons and Spiderwebs

To make that String Toss Game design on the computer,
you can use the TRI :N procedure you wrote earlier in this
chapter.

TO TRI :N
REPEAT 3[FD :N RT 120]
END

What would happenif you repeated the TRI :N procedure,
turning after each triangle?

REPEAT 6 [TRI :N RT 60]

What do you call a
shapethat hassix sides
likethis? That'sa
hexagon, right?

Hmmmm? That
sort of lookslikeasee-
through box — one of
those optical illusions.

AVA
2/

But back to hexagons for now.

210

Varying Variables

TO HEXAGON :N

REPEAT 6 [TRI :N RT 60]
END

Be sureto tell the turtle how big to make the hexagon.
Try this:

\
/

HEXAGON 60
HEXAGON 80
HEXAGON 100

/
\

What doesthislook
like? Of coursg, it'sa
spiderweb!

Can you think of another way to write
=1 thisprocedure so that theturtlewill do the
' same thing? How about this!

TO SPIDERWERB :N
HEXAGON :N
HEXAGON :N + 20
HEXAGON :N + 40
END

Go ahead. Typethe SPIDERWERB :N procedure and then
try

SPIDERWEB 40

211

Varying Variables

Play around with thisideato seewhat it can do. Make up
some other shape procedures using variables.

Adding More Can you think of away to use more variablesin the
Variables SPIDERWEB procedure? What about substituting avariable
for 10? For 20? For both?

TO SPIDERWEB :N : X 1Y
HEXAGON :N
HEXAGON :N + :X
HEXAGON :N + : X * Y
END

Thisis getting complicated.

‘N givesyou the size of each side.
:X tells you how much to add to :N
'Y tellsyou to multiply :X by this number

After you' ve typed in this procedure, see what happens
when you try

SPIDERWEB 60 20 2

Doesthislook like thefirst spiderweb the turtle drew? It
should. Let’schangethevariablesto numbersand takealook.

TO SPIDERWEB 60 20 2
HEXAGON 60
HEXAGON 60 + 20
HEXAGON 60 + 20 * 2
END

212

Varying Variables

Changing a Typing SPIDERWEB 60 20 2 is fine when you want to

Variable make three hexagons that have sides of 60, 80, and 100. But
what if you want to do five hexagons? Seven hexagons?
Seventy hexagons?

Let’stry something! When you write a procedure, it
becomes another command you can use, right?

OK. Then let's make the most of it. Tell SPIDERWEB
to draw a hexagon using the variable :N. Then tell
SPIDERWERB to add 10 to itself and do the same thing again.

TO SPIDERWEB :N
HEXAGON :N
SPIDERWEB :N + 10
END

Try it! What happens?
Wait a minute!

Thelast line of the SPIDERWEB procedure has the
procedure using itself. That’s strange!

No, that isn’t strange, that’ srecursion. There'sawhole
chapter on what you can do with recursion. For now, let’sjust
stick with the variables.

Local and Global Variables

Most versions of Logo use two types of variables: local
and global. Global variablesare used by any procedure. Take
alook.

TO SHAPES :N
TRI :N

213

Varying Variables

214

SQUARE :N
RECTANGLE :N
END

How about it? Can you write proceduresfor atriangle, a
square, and arectangle using :N to represent the distance
forward.

TO TRI :N
REPEAT 3[FD :N RT 120]
END

TO SQUARE :N
REPEAT 4 [FD :N RT 90]
END

TO RECTANGLE :N
REPEAT 2 [FD :N RT 90 FD :N * 2 RT 90]
END

Now, whenyoutype SHAPES 100, each of theprocedures
will use 100 wherever thereisan :N. The:N isaglobal
variable. It's available to anyone who wantsto use it.

Global variablestend to be anuisance. Logo hasto keep
track of which procedures uses which global variable, what
the value of the variableis, hasit changed? This takes up
valuable memory.

Of course, sometimes you have to use global variables.
But it keep things neater if you can use local variables.

Local variablesare“local” to the one procedure where it
iIsused. Sothereisn’t nearly asmuch record-keeping required,
making it easier on Logo.

Outputting
Variables

Varying Variables

Y ou write them like this:

TOTRI

LOCAL "X

MAKE "X 100

REPEAT 3[FD :X RT 120]
END

Hey, there'sanew command, MAKE. You'll learn more
about that onthenext page. Inthemeantime, go ahead. Change
your TRI procedure. Change the TRI :N in the SHAPES
procedureto just TRI. Now run the SHAPES procedure using
SHAPES 100 again. What does the picture look like? Why?

You'll seelots more examples of local variables as you
move through the rest of this book.

OK, local variablesaregood. Global variablesare not so
good. Isthere another way to pass information between
procedures without using global variables?

Sureid

YoucanOUTPUT them. Y ouremember, OUTPUT sends
information to another procedure. Let’ susethe TRI procedure
as an example. Here'swhat you need to do.

TOTRI
REPEAT 3[FD X RT 120]
END

TOX
OUTPUT 100

215

Varying Variables
END

Inthisexample, X isn'treally avariable. It’saprocedure.
So how would you add alocal variableto this so that X would
pass information to TRI?

How about this?

TO X

LOCAL "Z

MAKE "Z READWORD
OUTPUT :Z

END

Isthisreally the best way to run the TRI procedure? Of
course not. The important lesson hereis

Don’t ever close your mind to new possibilities!
In other words, never say "Never."

Before we go, let’ s confuse the issue even more.
Actually, here'saway to ssmplify the X procedure above.
Y ou can combine LOCAL and MAKE using the
LOCALMAKE command.

TO X

LOCALMAKE"Z READWORD
OUTPUT :Z

END

Keep thisin mind as you continue.

216

Making
Variables

More Ways to
Make Variables

Varying Variables

LOCAL "X iseasy enough to figure out in the TRI
procedure. But what’swith the MAKE "X 1007?

MAKE isacommand that gives avalue to the variable
named "name." The name of avariable must always be what
Logo seesasaword. That meansit can bealetter, suchas:X,
or aword, such as:VARIABLE. Here show it works.

MAKE "<name> <value>

In the TRI example, the goal wasto MAKE the variable
X have the value of 100. Then you can use the variable : X
within that procedure whenever you want something to be
egual to (have the value of) 100. Inthe TRI procedure, the
variable :N was used as the side of the triangle, which in this
case is 100 turtle steps long.

Y oujust got introducedto MAKE. Well, Logo givesyou
lots of other waysto vary your variables. Let’'s start with
another look at MAKE.

MAKE "JOE 2
MAKE"TOM 4
MAKE "SAM :JOE + :TOM

Sowhat does:SAM equal? If you said six, you get aGold
Star.

You can also NAME :JOE + :TOM "SAM

Thisdoesthe samethingasMAKE "SAM :JOE + :TOM
except that you NAME <value> "<name>.

217

Varying Variables

If you want to see what :SAM equals, you can tell the

computer to

PRINT :SAM
or
SHOW :SAM

You can asotell Logo to
SHOW THING "SAM
or

PRINT THING "SAM

THING does the same thing as the dots. It outputs the

value of the variable named in theword that follows THING.
Sure, that sounds confusing. Try it afew timesand it will
begin to make sense. That’ swhy Morf likesto experiment so
much.

Conditional Things

Remember the SPIDERWEB procedure?

TO SPIDERWEB :N
HEXAGON :N
SPIDERWEB :N + 10
END

The problem with this procedure isthat it just keeps

running, filling your screen with spiderwebs. Isthere no way
to stop it other than pressing the HALT button?

218

Greater Than,
Less Than

Varying Variables

WEell, thereisaway. You just tell the turtle that IF the
last hexagon that it drew was as big asyou want the spiderweb
to be, THEN stop drawing.

Here' show you use IF. Since IF knows what you mean,
you don’t have to use the word THEN.

TO SPIDERWEB :N
IF:N > 100 [STOP]
HEXAGON :N
SPIDERWEB :N + 10
END

Look at that first linein this new procedure. When the
turtlereadsthisline, it learnsthat IF :N is greater than 100,
then stop drawing.

That thing that looks like an arrowhead after the :N > is
the symbol for “greater than.” It meansthat if the value of :N
Is greater than 100, then STOP.

If > means “greater than,” what does that other arrow
symbol [<] mean?

You guessed it. It means “lessthan.” An easy way to
remember which symbol iswhich is that the arrow aways
points to the smaller value.

219

Varying Variables

TEST

220

« |F :N > 100 means that the value of :N must be larger
than 100, at least 101.

« |F:N < 100 means that the value of :N must be less
than 100, no more than 99.

For our example, we picked 100 as a place to stop. You
can select your own stopping point. Or you can make the
stopping point another variable. How would you do that?

Go ahead. Giveit atry. But remember, if you're going
to use avariable like this, you have to add it to the procedure
name.

TOSPIDERWEB :N
IF:N>_ __ [STOP]
HEXAGON :N
SPIDERWEB :N +10
END

"OK, I understand IF. IF something istrue, then Logo
will carry outthenextinstruction. Andthat sitsinsidebrackets.
Butwhat if that somethingisnot true? What if | want Ernestine
to do something if the answer isfalse?

Actually, there aretwo waysto handlethat. Look at how
SPIDERWEB has been changed below.

TO SPIDERWEB :N

TEST :N > 100

IFTRUE [CSCT PR [SORRY'!] STOP]
IFFALSE [HEX :N]

SPIDERWEB :N +10

END

IFELSE

Varying Variables

Thefirstlinessaystotest :N toseeif itisgreater than 100.
Thenext linesaysthat if thetest istrue, clear the screen, clear
the text, print SORRY!, and stop. Thethird line saysthat if
‘N is not greater than 100, go ahead and run HEX :N. (HEX
:N isanew short name for HEXAGON :N.)

What doyouthink would happenif youleft out IFFAL SE?
Then you' d have

TEST :N > 100
IFTRUE [CS CT PR [SORRY'!] STOP]
HEX :N

Would that work? Try it and see. What did you learn
from that?

Y ou don’t always have to have both IFTRUE (IFT for
short) and IFFAL SE (IFF for short) in your procedures.

Another way isto use the IFELSE command. Let's
change the SPIDERWEB procedures and try it out.

TO SPIDERWEB :N

IFELSE :N > 100 [CS CT PR [SORRY!]STOP|[HEX :N]
SPIDERWEB :N

END

Thefirst line saysthat if :N is greater than 100
« Clear the screen

« Clear thetext

e print SORRY'!

- Stop

221

Varying Variables

If :N isn't greater than 100, run the HEX procedure and
move on the next line. You can think of IFELSE as

| F aconditionistrue, THEN do this or EL SE do this.
Actually, thisisjust what some L ogo packages|et you do. For
example:

TOL.OR.R
PR [SHOULD THE TURTLE GO LEFT OR RIGHT?]
IFRC="L THENLT 90 FD 100 EL SE RT 90 FD 100

END
You can aso writethe IF line as

IFRC ="L [LT 90 FD 100][RT 90 FD 100]

Thisworksjust fine in some versions of Logo — but not
in MSW Logo. You need IFEL SE.

Go ahead and explore. You’'ll see more of IFELSE.

When you'’ ve finished with spiderwebs, why not add
variables to your procedures for drawing other shapes? See
what you can do with squares, rectangles and things.

Remember, thisis your own Great Logo Adventure!

More on Tessellations

Tessellations are really great places to use variables.
These repeating patterns usually start with a basic shape that
Isrepeated in varying sizes.

222

More Fun With
Squares

Varying Variables

Do you remember the tessellation from Chapter 4 that
used Diamonds? Thisgetsabit tricky so think thisonethrough
carefully. Can you combine DIAMOND, DIAMOND1, and
DIAMOND2 to make one procedure using variables? How
would this change the other procedures?

Here are the Diamond procedures.

TO DIAMOND
REPEAT 2 [FD 8 RT 60 FD 8 RT 120]
END

TO DIAMOND1
REPEAT 2 [FD 24 RT 60 FD 24 RT 120]
END

TO DIAMOND?2
REPEAT 2 [FD 40 RT 60 FD 40 RT 120]
END

L ook at the distancestheturtle moves. Canyouwriteone
procedure for these that uses a distance variable?

TO DIAMOND :DIST
REPEAT 2 [FD :DIST RT 60 FD :DIST RT 120]
END

Now, rather than use DIAMOND, DIAMOND1, or
DIAMOND?2, you can use DIAMOND 8, DIAMOND 24, or
DIAMOND 40.

Let’stry atessellation with squares. Thefirst thing to do
Isdraw atower of squares, each square smaller than the last.

223

Varying Variables

TO SQUARES:S

IF:S<O0[STOP| hW
REPEAT 4 [FD :SRT 90]
FD :S

SQUARES:S-5

END

Try SQUARES now using different inputs. Thisisgoing
to be the basic pattern in the tessellation. The picture above
was made using 30 as the input to SQUARES.

Next, let’s make a TOWER of SQUARES.

TOWER takes two inputs: one that says how big the
SQUARES are, and the second to tell the turtle how many
times to repeat the SQUARES pattern.

TO TOWER:S:T
IF:T =0 [STOP|
SQUARES:S
TOWER:S:T-1
END

Here' s the pattern made by using TOWER 15 5.

And thisraisesaquestion. Areyou just going to make a
tall, skinny tessellation? Or can you make the TOWER
procedure turn the corner, maybe like a picture frame?

TO FRAME

PU LT 90 FD 100 RT 90 BK 40 PD
REPEAT 4 [TOWER 154 RT 90]
END

224

Varying Variables

Thefirst thing the
FRAME procedure
doesismovetheturtle
over to theleft. Then
it drawsthe FRAME
using the REPEAT
command.

REPEAT 4 [TOWER 15 4 RT 90]

Now we're getting some where. Try different inputs.
TOWER 15 4 seems to work pretty good.

To makethisinto an interesting tessellation, why not just
fill upaframewiththe SQUARES pattern? How areyougoing
to do that?

Rabbit Trail 17. Tessellating Squares

Here' saquick and easy Rabbit Trail for you. It'sagreat
way todiscover what you candowithyour SQUARESpattern.
Y ou can either use squares of different sizesor better yet, print
apage full of the SQUARES pattern and cut them out.

Now movethepatternsaround to seewhat kind of patterns
you can make.

Can you make the FRAME pattern using squares or your
cutouts?

Once you figure that one out, then figure out what the
turtlewould havetodotofill the FRAME pattern after it draws
the first TOWER pattern?

225

Varying Variables

More Towers

226

When the turtle draws TOWER 15 4, it can't just turn
around adraw the pattern again, canit? What would happen?
Why not try it and see?

After theturtlegetstothetop of thefirst pattern, itisgoing
to haveto moveover abit to draw the TOWER pattern coming
down the screen. But how far?

Y ou know that the pattern is :S stepswide. In TOWER
154, :Sis 15, right? So let’swrite a procedure for the turtle
to move at the top of the TOWER.

TO MOVE1L
RT 90 FD RT 90
END

When theturtle getsto thetop of the TOWER, she’ll turn
right, move over, and then turn right again. What happens if
we use the value of :Sor 15? Does that work?

No. The turtle ends up drawing the pattern over the
origina drawing. When the turtle turns at the top, it starts
drawing the SQUARES pattern by moving to theright. This
means the turtle has to move twice asfar, or :S* 2.

Try it. Seewhat happens.
TOMOVEL:S
RT90FD :S* 2RT 90
END

Try this:

Varying Variables

TOWER 154
MOVEL1L 15

It seems to work, doesn’t it!

Y ou're not out of the woods yet. Do
you see that blank space at the bottom —
to the right?

T [[F
1 1

How are you going tofill that in? Also, what istheturtle
going to have to do to draw the next TOWER?

How about this?
TOMOVEZ2:S

RT 90 FD :SBK :SRT 90
END

Theturtleturnsright, fillsin the gap, backs up, turnsright
again (that’s 180 degrees), and is ready to start again.

You didn’t know this was going to be this complicated,
did you?

There' s one more
procedure that will cr

We'll call it CO\

H [H H F
1 I
H [H [H |F
I 1 I
H [H [[H F
I B
H [H [H F
1 1 B
H [H [H F
A I
H [[H F
A I
H [H [[H F
1 I
H [H [[H F
H 1 I

TOCOVER:S:T:X

227

Varying Variables

Musical
Variables

228

IF:X =0[STOP]
TOWER :S:T
MOVEL:S
TOWER :S:T
MOVE2:S
COVER:S:T:X-1
END

Y ou aready know what the:Sand : T variablesare. What
about the :X?

That's easy enough. Just likethe :T variable, : X tells
COVER the number of times to repeat itself.

In the last chapter, we talked about making music. Now
that you’ ve read about variables, how about some musical
variables?

Do you want to turn your keyboard into musical keys?
Here's one way to do it.

TOMUSIC

MAKE "KEY RC

IF :KEY ="C [SOUND [262 100]]
IF :KEY ="D [SOUND [294 100]]
IF :KEY ="E [SOUND [330 100]]
IF :KEY ="F [SOUND [349 100]]
IF :KEY ="G [SOUND [392 100]]
IF :KEY ="A [SOUND [440 100]]
IF :KEY ="B [SOUND [494 100]]
IF :KEY ="S[STOP]

Rabbit Trail 18.

Varying Variables

MUSIC
END

There' s another new command, RC. That’s short for
READCHAR. When Logo seesthe READCHAR or RC
command, it stops and waits for you to type a character. In
this case, the letter you type becomes the variable :KEY.

If you type one of thekeys— A, B, C,D, E,F, G—you
hear anote. Just make sureyou use acapital letter. Otherwise
Logojust runsthe MUSIC procedureagain and again until you
hit one of the sound keys and press Enter.

Tangrams

The Tangram is an Oriental puzzle with seven shapes of
different sizes.

S
—

229

Varying Variables

The puzzleisto use these shapesto makelots of different
things. Here'smy pup tent.

Why not visit your local library or bookstore? Y ou’ |l find
there are a number of books on tangrams that will give you
lots of ideas of what to do with your new puzzle pieces.

There'saPCX file on the CD that came with this book
called TANGRAM.PCX.

230

Varying Variables

1. Print the picture and paste it to a piece of cardboard.

2. Carefully cut out the pieces.

3. Now you can play with the piecesto create interesting
shapes: birds, ships, dragons, and other interesting
designs. Here’'s some to get you started.

4. Now draw them on the compuiter.

There' s aprocedure on the CD that came with this book
called TANGRAM.LGO. Y ou can use that to create your
Tangram shapes. Wetalk about it in The Great math
Adventure chapter.

Now, why not see what you can do with Tangrams?

Adding Borders Morf just loves to put borders around things, even the
graphics window. Take alook!

231

Varying Variables

TSN

74

:
a

2
a3

2

e AN

Joe Power, afriend from California, taught Morf how to
dothat. It comesin real handy when you want to do a pretty
card or announcement.

Here' s the procedure.

TO BORDER

CSHT

PULTO90FD 200LT 90 FD 100 LT 180 PD
BRAID

END

Y ou can change the change this procedure to make the
border larger or smaller. Y ou also haveto changethelast line
of the BRAID procedure.

TO BRAID

MAKE "SQR2 1.4 ;Square root of 2

MAKE "HFSQ2 0.7 ;Half the square root of 2
MAKE "S2 8.5 ;Square root of 2 * 6

232

Adding
Comments

Varying the
Border

Varying Variables

MAKE"H2 4.2 :(Squareroot of (2* 0.5)) * 6
MAKE "S2H2 12.7 :S2 +:H2

PUFD 24 RT 45FD 4.2 SETH OPD

REPEAT 2 [STRIP 20 CORNER STRIP 30 CORNER]
END

What' s that stuff out to the side?

Those are comments. Programmers usually "annotate”
their code, or programs. That means that they leave
explanationswritten in their programs so that userswill know
what the program or procedure is supposed to do. In thiscase,
the notestell you what the variables mean.

Y ou can add notes to your MSW L ogo procedures by
typing a semicolon followed by your notes. Logo doesn't pay
any attention to anything that follows the semicolon. If your
version of Logo does not recognize the semicolon, use this
procedure. It does the same thing.

TO : :comment
END

Asto the "sguare roots" in the comments, don’t worry
about them right now. Y ou' Il get into themin The Great Math
Adventure chapter. You’ ve got enough to think about just
trying to figure out what the BORDER procedure is doing.

To change the size of the BORDER, change the number
of timesthat STRIPisrepeated. Changeit from STRIP 20 to
STRIP 15, for example. Go ahead. Giveit atry.

TO CORNER
LT 45FD :H2RT 45FD 6

233

Varying Variables

234

RT 45FD :S2 RT 45FD 18

RT 45 FD :S2H2 PU

RT 90 FD :H2 PD RT 90 FD :S2
LT45FD 18LT 90 FD 6 PU
LT45FD :S2PD LT 90 FD 17 PU
RT 90 FD :H2 PD RT 90 FD 17 PU
RT 45FD 6 RT 90 FD 12 PD

RT 45FD :H2RT 45FD 6

RT 45 FD :H2 PU RT 90 FD :H2 PD
RT 45 FD 6 PU BK 15RT 90 FD 9 RT 90 PD
END

TO START

; Here's asimple procedure that puts a braided border

; around the edge of the screen. Morf likes frames

; for his pictures,

; Y ou can change the size of the border by changing the
; variable used by STRIP in the BRAID procedure.
BORDER

END
TO STRIP:N
REPEAT :N ~

[
LT 45FD :H2 RT 45 FD 6 RT 45 FD :S2H2

PURT 90FD :H2PD RT 90FD :S2LT 45FD 6 PU
LT45FD :S2H2 PD LT 135RT 45FD :H2LT 45
FDO6LT45FD :S2H2PU LT 90FD :H2PD LT 90
FD :S2 RT 45 FD 6 PU RT 135 FD :S2H2 RT 45
FD 6 PD

]
END

Varying Variables

Using the Tilde The Strip procedure is actually one long line. But look
how it’s written.

REPEAT :N ~
What' s that symbol after :N?

It'satilde. InMSW Logo, that meansthat theinstruction
list is continued on the next line. There you find asingle
bracket:

When you havelong linesand listsinside other lists, they
can get confusing — very difficult to read. MSW Logo gives
you some help. When MSW Logo sees asingle bracket like
that, it knows to look on the next line for the rest of thelist.

Therest of thelinein STRIPissimply along list of
commands. But what if you had listswithin lists. Here'sa
simple example.

TOHEX
REPEAT 6 ~

[
REPEAT 3 ~

[
FD 100 RT 120

]
RT 60

]
END

Thisisthe same as

235

Varying Variables

TOHEX
REPEAT 6 [REPEAT 3 [FD 100 RT 120] RT 60]
END

When proceduresbeginto getlongand complex, youneed
asystem that allows you to read and understand what’ s going
on. Asyou will seein coming chapters, thiscan comein real
handy.

Check out the proceduresin the MSW Logo "Examples’
directory for some other examples of multi-line procedures.

From Two to Three Dimensions

"Morf, doyou remember Jamie, thesix-year-old fromthat
kindergarten class we worked with afew years ago?"

"The name’ s familiar. What did she do?'

" She was the one who told that newspaper reporter that
shewas smarter than the computer — because she could roller
skate!"

Jamie was among the children at a private school near
Dallas who enjoyed learning with Logo on and off the
computer. What made her kindergarten class so special was
the way they quickly and easily learned to visualize the
differencesbetweentheir three-dimensional worldandLogo’'s
two dimensional world.

©S

\1.
,2) The first thing you see, looking at a
soccer ball, isabunch of hexagon shapes.

challenge for you. Draw pattern of a soccer ball

236

Varying Variables

When some 3rd and 4th grade computer
club members were asked to draw this
pattern onthescreen, they thoughtitwould

be easy.

TO SOCCER.BALL :DIS
REPEAT 6 [REPEAT 6 [FD :DISRT 60] FD :DISLT 60]
END

The boy’ s team thought that all they had to do was draw
a series of hexagons. But the center was a pentagon, not a
hexagon. So their procedure didn’t quite work, did it.

The girl's team was the first to figure out that they could
not make the soccer pattern on the screen as it appears on the
ball. They had to flatten it out. At first, they thought this
procedure waswrong. But then they discovered it wasreally
correct.

TO SOCCER :DIS
REPEAT 5 [REPEAT 6 [FD :DISRT 60] FD :DISLT 72]
END

The girls printed twelve of their patterns, colored them,
cut them out, taped them together, and made their own soccer
ball. When they were finished, they decided it made a better
pinata.

237

Varying Variables

So they filled it with candy and had a party.

Adam’s Soccer One young man decided to seeif he could produce the
Ball entiresoccer ball patterninjust one printout. Two wasthe best
he could do.

Here' sapicture of Adam’s soccer ball. The procedureis
on the CD that came with this book as SOCCERM.LGO.
Maybe you can figure out away do it all at once.

Thisisthe M printout.

238

Varying Variables

Thisisthe M 2 printout.

Rabbit Trail 19. Folded Paper Fun

Making the soccer ball out of paper isjust one of many
things you can do with Logo and folded paper. The computer
club that madethefirst flattened soccer ball pattern found that
you can makeall sortsof threedimensional objectsfromfolded

paper.

How about a simple cube? This takes you from the two
dimensional square to athree dimensional cube.

TO CUBE :D

CSHT

REPEAT 4 [SQUARE :D RT 90 FD :D LT 90]
PU HOME REPEAT 2 [RT 90 FD :D] RT 180 PD
REPEAT 3[SQUARE :D FD :D]

END

TO SQUARE :D
REPEAT 4 [FD :D RT 90]
END

239

Varying Variables

240

The group first cut out a number of cardboard squares.
Then they taped them together to see what kind of shapesthey
could make. The next step was to transfer the pattern to the
computer.

Making 3-D shapes from triangles really got interesting

TO TETRAHEDRON :D

RT 30 TRI :D MOVER :D TRI :D
MOVEL :D TRI :D

END

TOMOVER :D
RT60FD :D LT 60
END

TOMOVEL D
LT 60 FD :D RT 60
END

TOTRIR :D
RT 60 FD :D TRI :D
END

TOTRI :D
REPEAT 3[FD :D RT 120]
END

TO OCTAHEDRON :D

LT 30 TRI :D RT 30 TETRAHEDRON :D
LT 60 TRI :D TRIR :D TRIF :D

END

TOTRIF :D

FOR

Varying Variables

FD:DRT 60 TRI :D
END

TETRAHEDRON and OCTAHEDRON arejust the
beginning of what you can do with Logo and a printer.

Go ahead. Try these. Print them. Fold them up. And
then design your own 3-D figures.

Thewholeideaisto explore, to discover what you don’t
know and then go find the answers.

"No, Morf, thisisn’t agolf match. FOR isanew command
to explore. It can be a big help sometimes. Here, watch what
this one-liner does."

FOR [N 02200] [FD 3RT (:N * :N)]

That’s not nearly as bad asit looks. There’sjust a bunch
of stuff to remember. Maybe it would help to ook at the
procedure below. It does the same thing.

TO CRAZY.CIRC :N
IF:N > 2200 [STOP]
FD 3RT (:N * :N)
CRAZY.CIRC:N +1
END

Here' s another look at it as adifferent kind of one-liner.

MAKE "N 0 REPEAT 2200 [FD 3RT (:N * :N) ~
MAKE "N :N+1]

241

Varying Variables

242

Thistellsyou exactly how it works.

N isthe name of the variable used in the crazy circle.

0 isthe starting value of :N

2200 isthefinal value of :N

[FD 3RT (:N * :N)] Thelist of instructions to carry out.

InMSW Logo, FOR looksfor twolists. Thefirst list "sets
the rules" for what’ s supposed to happen. The second isalist
of what is going to happen.

Logo looksfor aword asthefirst element in thefirst list.
Yes, NisawordinLogo eventhoughit’sonly oneletter. The
rest of the list includes two or three numbers.

Thefirst number isthe starting value for the variable, N.
The second number isthe final value for :N. There can bea
third number that tells Logo how to count from the first value
tothefinal valueof thevariable. Normally Logo will count by
lasitdidin CRAZY.CIRCLE. How about this one:

FOR [N 0100 5] [SHOW :N]
In this case, Logo counts by five. Thisline says:

For thevariable:N, start at 0 and go to 100, making each
step 5. Now show (or print) :N.

Here's some other examples to play with. These came
from an on-line contest to find the prettiest one-liner.

FOR [X 1 150] [FD :X RT 89]

FOR [I 0.01 4 0.05] [REPEAT 180 [FD :I RT 1]]

FOR [X 10 200] [SETPENSIZE SE :X :X ~
REPEAT 36 [FD 20 RT 15]]

Varying Variables

DEFINE Your Procedures

Speaking of oneliners, here' s another way to define
procedures and variables. Use the DEFINE command.

DEFINE "SQUARE [[SIDE] [FD :SIDE RT 90]]
Try it. You'll see that thislineisthe same as:

TO SQUARE :SIDE
FD :SIDE RT 90
END

Keepin mind that DEFINE doeswhat it saysit’ sgoing to
do: defineaprocedure. It doesn’t run the procedure. Y ou have
to tell Logo to do that.

The nice thing about it isthat DEFINE can be used as a
command within another Logo procedure, whereas TO
requires you to use the Mode window or the editor.

Thefirst thing that DEFINE looks for isaword that says
what the name of the procedureisto be. In this case, the name
of the procedure is SQUARE. Next, DEFINE looks for alist
that includes any variable inputs followed by lists of
instructions. Each line of instructions s put inside brackets.

Y ou don’t have to use variables to use the DEFINE
command. Both of these examples work just fine.

DEFINE "SQUARE [[][REPEAT 4 [FD 50 RT 90]]]
DEFINE "HELLO [[][PR"[I'M LOGY![J[PR "[I'M MORF![]]

Remember the SHAPES procedure? Here' s another way
to write the shapes procedures using DEFINE within a
superprocedure.

243

Varying Variables

244

TO SHAPES

DEFINE "SQUARE [[][REPEAT 4 [FD 50 RT 90]]]

DEFINE "TRI [[J[[REPEAT 3 [FD 50 RT 120]]]

DEFINE "REC [[[[REPEAT 2 [FD 50 RT 90 FD 100 ~
RT 90]]]

SQUARE TRI REC

END

Here' s one to have some fun with:

DEFINE "FRAC [[N] [IF :N > 1 [FRAC :N RT 60 ~
FRAC :N FD :N]]

Is the same as defining this procedure like this:

TOFRAC:N
IF:N>1[FRAC:N* .6 RT 60 FRAC:N *.6 FD :N]
END

Now that’sweird! You' ve got a procedure calling itself
— notjust once, buttwice. That’ srecursion, whichisdiscussed
in the Recursion chapter.

Thislittle monstrosity is afractal procedure. To really
understand what’ s going on, you'’ Il have read the Recursion
chapter and The Great Math Adventure chapter. In the
meantime, why not have some fun with it.

Try FRAC 100

Copying
Definitions

Varying Variables

Try different numbersto seewhat it does. Then change .6
to another number, like .7 or .4. Change RT 60to RT 90 or RT
72. What happens?

Toreally understand thisprocedure, you' regoing to have
to read the recursion and math adventure chapters.

Hey, do you want to play atrick on your parents? Maybe
on your teacher? | just love playing tricks on Logy.

COPY DEF and REDEFP are commands that let you
rename your own proceduresaswell asyour Logo primitives.
Don’t worry, these new names are not saved. And while these
commands can be useful at times, they sure can be fun. They
use variables, too!

Let’s start with COPY DEF. Thisone's easy.
COPYDEF "FRACTAL "FRAC

This copies the new name FRACTAL to the old name
FRAC.

Now type

EDIT "FRACTAL

You get

TO FRAC N

IF:N>1[FRAC:N* .6 RT 60 FRAC:N *.6 FD :N]

END

What happened to the new name FRACTAL? Actually,
it's buried, something you' |l read about in the next section.

245

Varying Variables

Redefining
Primitives

246

Someversionsof Logo copy thewhol e procedurewiththenew
name. Then you'll get:

TO FRACTAL :N
IF:N>1[FRAC:N* .6 RT 60 FRAC:N *.6 FD :N]
END

This shows you that you have to be careful using
COPY DEF. What would happen if you erased the FRAC
procedure?

You'dbeinbigtrouble, that’ swhat. Sowhat goodisthis
new command?

Suppose you wanted to run a procedure that uses the
SETPOS command but your version uses the SETXY
command. One of the ways to get around this differenceisto

simply type
COPYDEF "SETPOS "SETXY

Now you' ve got a SETPOS command that acts the same
asthe SETXY command. Get theidea?

Now that you know how to copy anew nameto a
procedure, let’ stry it onal ogo primitive. Todothat, you have
to make REDEFP true. That meansto turnit on. Here's how:

MAKE "REDEFP"TRUE

Now you can go ahead and change the Logo primitives.

ERASE "FD

Varying Variables
Now try FD 100. What happens? Y ou get
| don’t know how to FD
Now try this one.

COPYDEF "FD "BK
FD 100

Remember, you COPY DEF <new name><old name>.
So what happened? Does this give you any ideas?

Bury and Unbury

When you COPY DEF anew name over an old name, the
old name stays around just as you saw above. The new name
gets buried.

BURY isone of those Logo primitives that is often
ignored. But it can be very useful.

Let’stry something.
1. Load any procedure.
2. Type BURYALL and press Enter.
3. Type POALL and press Enter.
Where' d the procedures go?
Try to run the buried procedure. What happened?
Now load another procedure.
Type UNBURYALL and press Enter.

N o o A

Type EDALL and press Enter.

Both the procedures are now visible in the Editor, aren’t
they?

247

Varying Variables

What this meansis that when you bury something, it
moves from your workspace into another part of the
computer’s memory. It'slikeit’ s buried!

Why not bury the color proceduresfrom the last chapter?
First load the color procedures. Then type

BURY "COLORS

If you type POTS, nothing isdisplayed, right? Now type

SETSC BLACK
The screen color turns black.

Y oudon’t haveto remember color numbersanymore. Use
the names.

If you ever want to see what’ s buried, just say
UNBURY "COLORS or

UNBURYALL

This"digs up" everything that’s buried.

Planting Early inthischapter, you had the chanceto " plant another

Another Garden garden." Beforeyouleavethischapter onvariables, how about
planting another garden by adding atwist to the Anyshape
procedure. Thisalso adds atwist to running procedures
automatically and shows you something el se about variables.

248

Varying Variables

In the FLOWERS procedure, you run procedures from
within another procedure. Take alook.

TO FLOWERS :REPEATS :LIST
REPEAT :REPEATS ~

[RUN :LIST RT 360/ :REPEATS]
END

RUN isacommand that tells Logo to run alist of
commands. Y our remember what alist is, don’t you? The
GARDEN procedure gives you a pretty good idea. Lists can
contain words, commands, or other lists.

Take alook at thefirst line of GARDENS. After you
clean the screen, you have FLOWERS 5. That means that
the :REPEATS variable has avalue of 5. Then you have a
list [FD 50].

TO GARDEN
CS FLOWERS 5 [FD 50] WAIT 60
CS FLOWERS 5 [FD 60 SHAPE 50 5] WAIT 60
CSFLOWERS5 [FD 50 LT 30] WAIT 60
CSFLOWERS7 ~

[FD 50 LT 60 FD 50 RT 120 FD 50 LT 60 FD 50]
WAIT 60 CS FLOWERS 8 [SHAPE 100 5] WAIT 60
CS FLOWERS 8 [SHAPE 100 3] WAIT 60
CS FLOWERS 8 [SHAPE 100 4] WAIT 60
CS FLOWERS 8 [SHAPE 80 6] WAIT 60
CSFLOWERSS5 ~

[FD 80 FLOWERS 8 [SHAPE 80 3] BK 80]

END

TO SHAPE :SIZE :REPEATS
REPEAT :REPEATS[FD :SIZE RT 360/ :REPEATS]
END

249

Varying Variables

Waiting

Last Minute
Ideas

250

Do you remember when we mentioned "waiting" before?
There are times that you want to slow down the computer so
you can see what’ s going on, or when you just want it to wait
afew seconds. That’'s where the WAIT command comesin.

WAIT <timein 60ths of a second>

There' sanother way to slow thecomputer down or to have
it take a pause. Write your own WAIT command. Because
WAIT isaprimitive already, call your new procedure TIME
or TIMER.

TOTIMER:T
IF:T = 0[STOF|
TIME:T-1
END

Y ou can make this procedure as precise atimer as you
need because you can make : T whatever you want. After all,
itisavariable. Youcanalsochange:T-1to:T-0.250r
whatever. It’ sanother way to get Logo to do exactly what you
want it to do. You can get it to wait in hundreths or even
thousandsth of a second.

"What if | just want to pause for amoment while running
aprocedure? Can | do that?"'

Sure, you can. That's what the Pause button is for; the
one over to theright in the Commander Box. Try it and see
what happens.

The GARDEN procedureis OK. But have you ever
seen a black and white garden? Try adding some color to it.

Varying Variables

GARDEN shows you a number of individual flower
shapes. Maybe you want to change those shapes. Or maybe
you want them to stay on the screen for alonger time. Add
aWAIT command.

Remember the last FLOWER picture that is displayed?

FLOWERS 5 [FD 80 FLOWERS 8 [SHAPE 80 3] BK 80]

Why not add some variations of this to the GARDEN
procedure so you have different groups of flowersin your
garden. Here' soneidea:

FLOWERS 12 [SHAPE 30 §]

Also, why not have your flower garden "grow" when it
loads.

Make "startup [GARDEN]

Whatever you do, have fun with your new garden.

251

Varying Variables

252

